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Abstract

We establish the mean square consistency of running (ordinary) least squares linear re-
gression smoothers, under realistic conditions on the joint distribution of the abscissa and
ordinate (X and Y below) variables. The windows used in the running least squares fits need
not be centered on the points for which they are used. In fact, we show that taking a window
of points entirely to one side of a data point, fitting a line to that window and using the value
of that line at the target point is consistent. It follows that the Supersmoother of Friedman
and Stuetzle (1982) and the Split Linear Smoother of McDonald and Owen (1984) are both

consistent.

This work supported by an N.S.E.R.C. Postgraduate Scholarship, Office of Naval Research contract N00014-83-K-
0472, Office of Naval Research grant N00014-83-G-0121, and U.S. Army Research Office under contract DAAG29-82-K-

0056.



1. Running Linear Smoothing.

Given observations (X;,Y;) € R?,1 < ¢ < n a running linear smooth value at z is a+ fz where
a and A are regression coefficients from a linear regression of Y on X over a set of observations
indexed by J(z).

In practice J(X;) typically comsists of the union of: the indices of the smallest k,/2
points in {X; : X; > X;}, the indices of the largest kn/2 points in {X; : X; < X;} and
{#} itself, with sensible modifications to handle ties and end effects. Furthermore J(z) is not
usually calculated for z’s that do not correspond to sample points, it being more expedient to
interpolate if necessary. In this paper it is more convenient to define the smoother at all points
without resort to interpolation. The above describes a central running linear smoother, the
adjective ‘central’ serving to distinguish it from one sided smoothers in which J(z) consists of

the k, nearest neighbors of z on the left (or right).

The Supersmoother of Friedman and Stuetzle (1982) combines several central smoothers,
differing only in the value of k,. Its design goal is to make more use of the smaller windows
in regions of X —space where the curvature of the regression of ¥ on X seems large relative to
the variance of ¥ and to emphasize the larger windows where the curvature is smaller, so as

to locally trade off bias versus variance.

The Split Linear Smoother of McDonald and Owen (1984) combines central smoothers
with left and right sided smoothers. The design goal is to provide an edge-detecting smoother
that produces output that is piece-wise smooth with a small number (possibly zero) of discon-
tinuities in the curve or its first derivative. It does this by taking a weighted average of the
smooths at each point; near a discontinuity it uses larger weights for the windows that extend

in the direction opposite the discontinuity.

Because these smoothers are used as building blocks in non-parametric regression tech-
niques such as projection pursuit regression (Friedman and Stuetzle (1981)) and A.C.E. (Brei-

man and Friedman (1984)) proofs of their consistency have ramifications beyond smocthing.

Stone (1577) shows that linear fits over sets of nearest neighbors are consistent when
trimmed. The nearest neighbor linear fits can be expressed as a weighted average of the Y

values in the neighbor set. Trimming involves adjusting those weights if necessary to make



sure that their ratios to the weights of some consistent estimator are uniformly bounded above
and below. The consistent estimator may be taken to be a nearest neighbor average. He states

that linear fits to nearest neighbors are not necessarily consistent.

Breiman and Friedman (1982) show that a modified central running linear smoother
is consistent. The modification is greatest at the end points of the sample where a lack
of observations makes it impossible to form the usual symmetric nearest neighbor window.
Unfortunately, the main reason for using linear as opposed to constant fits is to reduce bias
at the ends. Their modification would be severe for a one sided smootker that effectively
treats every point as an endpoint. (There are reasons other than consistency for making the
modification. They need a smocther that i3 a bounded linear operator on the observed Y
values whatever the X values, and the bound must be uniform in the sample size. Running
linear smooths (central or sided as defined here) have bounds that increase as the square root of
the window size.) Rather than changing the definition of the running linear smoother we place
additional restrictions on the distribution of the observations. Fortunately the restrictions are

realistic for applications.

By restricting the distributions we do not establish what Stone (1977) calls universal
consistency. He also obtains L’ consistency for all # > 1 such that the r** moment of Y is

finite, whereas we only consider L2.

2. Notation.

This section introduces the notation and defines a left sided running linear smoother.

The observations are a (finite prefix of) an infinite sequence of i.i.d. random variables
(X:,Y:), 1 £ i < 00. X and Y represent the complete sequences. The r*? order statistic
among the first n terms of X will be denoted X(('")) and similarly for Y. The first n terms will
be collectively denoted X (7).

For each z € R and each positive integer n define J,(z), the n*® window about z as
follows: if z < X((;')) orz > X((:)) then J,(z) = 0, if £ € X(®) then J,(z) consists of the greatest

kn terms of X(") that are less than or equal to = (if there are not k, such terms take all such



terms and if a tie need be broken take the term(s) with smallest index), otherwise take the
smallest term in X" that is greater than or equal to z and the k, — 1 largest other terms that
are less than or equal to z with the obvious handling of ties and shortfalls . For the typical
point z, J,(z) consists of its nearest neighbor on the right and its k,, — 1 nearest neighbors on
the left. For any observation X; in X the window Jn(X;) has no points strictly to the right

of X;. By construction, except in the case J,(z) is void

min X; <z< max X;.
i€JTn(2) 1€Ja(2)

The smooth value at z based on the first n observations is denoted m,(z, X,Y). As
written, it depends on the whole sequences X and Y, but it will really only depend on the first

n terms of them.

If Ja(z) is empty, then take m,(z, X,Y) = 0. Otherwise compute
' 1
pn(2)= 5= D, X
@l 2,

and

62(z =gt ; — iin(2))2.
M= g, 2 e

The left sided runhing linear smooth value is

mnp(z,X,Y) = -IT’-]('—)' Z Y;[1+ 5:)2,]
m eria)
where for any w, @ i3 0 if 6,(z) = 0 and otherwise

12} o w r ﬁﬂ(z) .
an(z)
Below, the dependence upon z and n of J, ¢ and j is sometimes suppressed.

The following identity will often be convenient

Y (1 +EX)? = |J|(1+3?).
el
The quantity Z is the distance of the target point‘ from the window mean expressed in

window standard deviations. A large magnitude indicates that the target point is not well



represented by the window set and this will be reflected in bias and variance expressions
below. The construction of J gaurantees, by Chebychev’s inequality, that z2 < k,. Breiman
and Friedman’s (1982) modified running linear smoother truncates z to +1 when it exceeds 1
in absolute value. They also note that |Z| < 1 whenever (in a central window) there are equal
numbers of points greater than and less than z. The construction above is in effect truncating
Z at +/kn, which gives less control, but obviates the need to modify the smoother within
the range of the observed X;. For convenience of exposition the smoother is zero outside that
range, although there would be no difficulty in extrapolating by extending the smooth values
at the left- and right-most sample points to the left and right of the sample respectively. If z is
an atom of £(X;) then % — 0 almost surely. Otherwise, under reasonable sampling conditions

Lemma 2 in section 5 shows that for a one sided smoother z> — 3 in probability.

3. Main Result.

This section treats the pointwise mean square consistercy of running linear smoothers, which
means the L? convergence of m,(z, X,Y) to m(z). Several technical Lemmas proved in section
5 are used. The following assumptions will be used to prove consistency of running linear

smoothers:

(I) X; are iid from distribution F = Fj+ F,, where
a) F has support on [0, 1].
b) F,. has a continuous positive density on [0, 1].
c) Fy has a finite number of jumps.
(II) Y; are conditionally independent given X with V(Y;|X) < 02 for some a2 < oo.
(III) ¥ m(z) = E(Y|X = z) then for all but finitely many points z IM(z) < co such that

Im(z) - m(z')] < M(z) |z - 2'|.

The first assumption constrains the distribution of the X’s. For technical reasons the
support of these random variables has to be compact and have an absolutely continuous part

with density continuous and bounded away from zero. Jump points are allowcd, although
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there can not be an accumulation point of the jumps of the distribution. The uniform bound
on the conditional variance of the ¥ random variables given the X variable is weaker than

the standard Lomoscedasiticy assumption but stronger than the assumption that ¥ € L2.

Condition (III) is unusual in that it allows simple jump discontinuities in the regression.

Theorem If condstions (I) - (III) hold, k,, — oo, and k3 /n? — 0 then {m,} is mean square

conssstent at z for almost all z.

Proof: Define $ = {z: V6 >0 P2<X<z+6)>0,P(z—6 <X <z)>0, and
either P(X = z) > 0 or condition III holds }. From the hypothesis it is easy to show that
P(X € §) = 1. From the triangle inequality

{E(m(2) - ma(2,X,Y))*}? < {E(m(z) - ma(z, X, m(X)))*}?

+ {E(ma(z, X, m(X)) - ma(z, X,¥))?}}, (1)

where the first term on the right hand side represents bias? and the second term represents
variance. m(X) is the sequence m(X;), 1 < ¢ < oo. It is sufficient to show both terms converge
to zero. First the variance term is considered, using Ex( - ) to denote conditional expectation

given the X-sequence.

E( (mn(z, X, m(X)) — ma(z,X,Y))?)
=E( + Y (¥ - m(X:))(1 + 3%;) )?

ks 4
(1=}
= 5B( 3 Bx( (% - m(X)? )(1+ 5%
n i€l
+ Y Ex( (Y — m(X:))(Ye — m(Xa)) W1+ 2X)(1 + 2X3) )
£k
= 55B( T Ex( (¥ - m(X))? )1+ 2507 (a)
. eJ
<E( {—2 S a+:x)?) (5)
L3 §



62|Jnl 1+ 52

=B( T ) (¢)

Equation (a) is a consequence of the conditional independence of the i’s given the X;’. (b)
follows from hypothesis (II) and (c) from the identity given in the first section. From Lemma

2 it follows that the last line converges to zero by the dominated convergence theorem.

The bias? term is

E( (m(z) - mn(z, X,m(X)))? ) = E( ki D Im(a) = m(X)|[1 + 2X;] )2

" ier

<B( 25 Vlmla) = m(X)P (1 +2%)2) (o
n ie’ i

>2

=g Bl 122 5 () - m(xa)?) 0)
n n !'GJ

< 2B( 3 (m(2) — m(X:))? ) (0
et

where (a) is a consequence of the Cauchy-Schwarz inequality, (b) is yet another zpplication of
the identity of the previous section, and (c) follows from Lemma 2. The last term converges

to zero by Lemma 3.

Hence for all z € S, the estimate is mean square consistent.

4. Further Results.

This section extends the above result to central and right sided smoothers, discuss consistency

under design measures on X, rates of convergence and global L? convergence.

Corollary 1  Under the conditions of Theorem 1, right sided and central smoothers are

- pointwise mean square consistent.

Proof For right sided smoothers, the result follows by symmetry. For central smoothers
define J7(z) as for a left sided smoother, J%(z) as for a right sided smoother and put J,(z) =
JS(z) = JE(z) U JR(z). The quantity 2 for the central smoother will be smaller than nine
times the largest such quantity from the one sided smoothers, and (z— )2 will be no larger for

the central smoother than the largest such value from the sided smoothers. (The first bound
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is obtained by straightforward calculation and is very conservative.) It follows from the bias

and variance bounds above that the central smoother is mean square consistent at all z € S.

Corollary 2  Under the conditions of Theorem 1, any smoother that at each point is a
convex combination of central, left, and right sided smoothers is pointwise mean-square con-
sistent. This includes, with appropriate window sizes, the Supersmoother and the Split Linear

Smoother.
Proof Immediate.

Remark 1 Pointwise L? consistency implies pointwise convergence in probability, which
when established for almost all points (i.e. all z € S) implies convergence in probability of

mn(Xo) to m(Xy) where X is independent of X and has the same distribution as Xj.

Remark 2 Instead of observing i.i.d. pairs (X;,Y;), consider choosing X according to a
design measure on the sequence and observing ¥ whose terms are conditionally independent
given X, and satisfy the distributional assumptions as above. Then E( (1 + z%)/k, ) — 0 is
sufficient to guarantee that the variance term will vanish as n — co. If there is a positive
minimum conditional variance of ¥ given X = z, then E( (1 + 2%)/k, ) — 0 is-also necessary
for the variance term to vanish. Similarly the bias term can be controlled by design. If all the

X; are sufficiently uniformly spaced then z? will be bounded in z and n.

Theorem 2 (Global L? convergence) Under the conditions of Theorem 1, and if
|m(z) — m(z')] < M|z — 2'| the central smoother satisfies mn(Xo,X,Y) — m(Xp) in L2

where Xj is independent of X and has the same distribution as Xj.

Proof Let Z be an indicator variable which is 1 when on < 1. Then the variance term is

bounded by

2
2,:1 +20%E(1-2)
< 202 2 (n) (n)
ST+ 20°(P(Xo < X)) + P(Xo > X )
2
$2i- + 402k—"
kn n
—0,



(where X((,',')) is defined in section 2), and the bias? term is bounded by

7% (Xo)| TR (Xo)|
M? n Y (e \
2—‘72—E( E : (U(('.)))2+ (U(('_)))i.’}

=1 =1

RF 2
<Mk

—»0,

where U(('.';) is the ¢*# order statistic out of n independent uniform random variables and v is

the same quantity found in the proofs of the Lemmas.

Remark 3 Notice that the bounds above imply the squared error can be made to converge
at rate n=2/3+¢ by letting k,, grow at a rate slightly slewer than n2/3. The optimal global rate
of convergence assuming one derivative is n=2/3 (Stone (1982)). This proof also goes through
for the sided smoothers except that Z must indicate that X2 < B for some B > 3. (Recall
X2 — 3 in probability.) It can be shown that P(z? > B) — 0 at least as fast as k;* and so
the same rates obtain for the sided smoothers as for central ones. However, the main use of

sided windows is for situations in which it is suspected that there is a discontinnity.

Remark 4 Compared to linear fits over nearest neighbor windows, the central smoother is
based on points farther away from the target. On the other hand, a linear fit over the k,

2 since, in the worst case, all the neighbors can

nearest neighbors puts no bound at all on z
be in a cluster on one side of the target point. Using symmetric nearest neighborhoods #2
is bounded by k, for all points and by 1 for most points. (The former was handy in some
dominated convergence arguments.) Thus in addition to being faster to compute, linear fits

over symmetric nearest neighborhoods are safer than those over nearest neighborhoods.

Remark § The Split Linear Smoother and the Supersmoother were designed to meet specific
finite sample goals. We believe those goals to be more important than asymptotic behavior.
The point of this paper is to show that without any modification in the observed range of X

the attainment of finite sample goals is not at undue asymptotic expense.



5. Proof of Lemmas.

Conditions stated in section 3 are assumed to hold. The main idea driving the following
Lemmas is that under the distributional assumptions (I)-(III) the observations X; “sufficiently
close” to z behave like observations from a uniform distribution. Once this correspondence is
established exact calculations can be made for the uniform variates in a way that gives bounds
for the quantities of interest. Lemma 1 makes precise the sense in which the points of J,(z)
get “sufficiently close” to z. Lemma 2 provides a construction that bounds the small order
statistics of the z — X’s by the order statistics of a uniform distribution. This construction is

then exploited by Lemmas 2 and 3.

By the definition of J(z) there may exist an element of J(z) to the right of z. In Lemmas
2 and 3 that element allows the application of Chebychev’s inequality. However, explicit
consideration of that point would add unnecessary complexity involving quantities of O(1/k)
to the following proofs. Therefore with the exception of the appeal to Chebyclie¥’s inequality
that point is not considered. The reader is invited to make the necessar:;r (minor) alterations

to include the point if so motivated.
Lemma 1: Vz € S, maxiey, () |z — Xil =0.

Proof: Let T;* = 37, x{z — 1/m < X; < z}. From definition, T™ > k, implies
maXies,(2)|z — Xi| < 1/m. From the law of large numbers T, 2, P(z - 1/m < X < z)
which is positive by hypothesis. Since 5,:1 — 0, there exists a null set Ny, such that on N, lim

sup {maX;c;,(s) |2 — X;|} < 1/m. The results then holds on (U N,,.)c.

m=1

Lemma 2:  Vz€ S, A(1+ ) is uniformly bounded, with (1 + 72) 2 0.

Proof: Chebychev’s inequality yields z2 < k,. If z is an atom, then by definition and

2

the law of large numbers, z2 2% 0. Hence without loss of generality it may be assumed z is

not an atom. In the terminology of section 2 it is sufficient to show z2 1 3, or equivalently,
) <2vsa2 P
(63 +bn)/BE — 3.

Let
z - X; + [F(X;) - F(X])] nj ifX;<z

X; +[F(X;) - F(X7)] nj otherwise
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where n; is an independent sequence of uniform random variables. Define F*(t) = P(X} < t).
Then F* has a density bounded away from zero on its support. Further, for j € J,(z),
X}' >z— X,‘. )

From hypothesis 37 > 0 such that F is continuous on [z — r,z]. Denote the density of 7™ by
f*. Pick € > 0. Then 3§ € (0, 7) such that M < (1 + ¢)m, where M = max,¢[o 5)/*(2), and
m = min,e(o 5)f*(z). Define

F*(¢t), if t < 6;
G(t) = F*(6) + /()¢ =68) §<t< b+ Gyl F ()]
1 otherwise.

and set Z; = G™lo F*(X7). Z; has cumulative distribution function G, m < EIdiEG(z) < M,
and Z; = z — X; for X; € (z — 6,2z]. Let Z(;; denote the order statistics. From Lemma 1
P{Xk}resn(z) # {2 - Z(,-)}'-:__’ll) L, 0 as n — oo . Thus it suffices to show

kn
B2 P
(& Tk 2)°

€Ol

Set Uy) = G(Z(;)). Then {U;} are distributed as the order statistics from a uniform dis-
tribution. From construction of the Z’s and Taylor’s theorem, Uy = G(Z(;)) = G(0) +
Z( %G(z)l,_—_,, =1 - Z(;), where n € [0, Z(;)] 'and m < a‘i—tG(z)I,:,, = < M. To obtain an
upper bound of the limit one applies simple algebra to yield

kn

B 2521 2 <(1\_4)’ £ 25t UGy
2

(& 252 2) m) (& U’

=(1+ )2 kln J—I{U(J)/U(kn+‘)}
{r Zl—l Uiy /Utkn+1) }2
P 4
—_ 3 1+ 6)2 (a)

Since the random variables {U;)/U(x,+1)} are distributed according to the ordered statis-
tics of a uniform distribution (a) follows from a simple variant of the weak law of large numbers.

A symmetric argument yields the lower bound. Since ¢ is arbitrary the result follows.
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Lemma 3: Vz€S, EYc;(m(z)-m(X;))® = O(k3/n?).

Proof: Keep the same notation and construction of Lemma 2. Define WW; = F* (X7). Then
W; are uniformly distributed and from the mean value theorem, W; = > f*(n) for some
n € [0,X}]. Let v = inf,f*(z). From hypothesis IIl IM(z) such that |m(z) — m(X;) <
M(z) |z — X{;)|. Thus

EZ(m(z) - m(X,-))z < M?(z)E Z(z = X,-)z

et i€t
< MH2)B Y (X;)"
i€J
M
( )EXEW(J)
P
w z k3
,,£ ) & (a)

Step (a) is a consequence of the fact that W(;) is the 7** order statistic fromrn uniformly
distributed random variables and consequently is distributed according to a Beta distribution

B(7,n+1-3).

6. Acknowledgements.

The authors appreciate the helpful comments of Iain Johnstone and Fred Huffer.

7. References.

Breiman, L. and Friedman, J.H. (1982) Estimating Optimal Transformations for
Multiple Regression and Correlation, Stanford University Department of Statistics,
Technical Report ORION 010

Breiman, L. and Friedman, J.H. (1984) Estimating Optimal Transformations for
Multsple Regression and Correlation, 3.A.S.A. (to appear)

Friedman, J.H. and Stuetzle, W. (1981) Projection Pursust Regression, J.A.S.A.
76

12



Friedman, J.H. and Stuetzle, W. (1982) Smoothing of Scatterplots, Stanford Uni-
versity Department of Statistics, Technical Report CRION 003

{cDonald, J.A. and Owen, A.B. (1984) Smoothing with Split Linear Fits, Stanford
University Department of Statistics, Technical Report LCS 007

Stone, C.J. (1977) Consistent Nonparametric Regression, The Annals of Statistics Vol.
5

Stone, C.J. (1982) Optimal global rates of convergence for nonparametric regression,
The Annals of Statistics Vol. 10

13





